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SUMMARY

The problem of formulating an orthogonal, analytic (i.e., non-

numerical) coordinate system for use in a simulation of the coupled

ionosphere/magnetosphere/solar wind system which has been perturbed by a

high altitude nuclear explosion at high magnetic latitude has been inves-

tigated. Experience with existing MHD codes, which simulate the behavior

of mid-latitude ionospheric plasmas, indicates that a very useful coordi-

nate system to use in such studies is one which is aligned with the geo-

magnetic field. Unfortunately, the presence of magnetospheric field-

aligned current systems precludes the possibility of constructing an anal-

ogous orthogonal magnetic-field-aligned coordinate system suitable for the

high latitude problem. It is possible, however, to characterize an inter-

esting class of possible orthogonal coordinate functions which generalize

the formal structure of the dipole-field-aligned coordinate system in a

mathematically simple way. One member of this class - referred to above

as the "zeta-coordinate system" - has been studied in considerable detail.

This coordinate system is dipolar in character at small distances from the

origin but becomes cylindrical at larger distances. It can, therefore, be

used to generate computational meshes which appear to be better tailored

to the requirements of the high latitude problem than those which can he

generated using standard coordinate systems. The zeta-coordinate system

is double-valued. The nature of this double-valuedness can be specified

quite precisely, however, and does not seem to offer an impediment to the

use of this coordinate system in practical applications.
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SECTION 1

INTRODUCTION

For the past several years, the Defense Nuclear Agency (DNA) has

been pursuing a research program to develop a comprehensive understanding

of the phenomenology of high altitude nuclear explosions. The motivation

for this effort has been a recognition, spawned in the early 1960s by high

altitude nuclear tests (over the mid-Pacific near Johnston Island)', that

nuclear explosions at ionospheric altitudes could produce widespread and

long lasting detrimental effects upon radio communication links, radars,

and optical or IR sensors. In addition, such explosions can disrupt the

operation of electrical equipment through the phenomenon of electromag-

netic pulse (EMP). In the 1970s, the primary emphasis of DNA's research

was directed toward effects at low and mid latitudes (low latitudes

because all of the high altitude nuclear tests were conducted at magnetic

L-shells of ahout two or less, mid latitudes because of the location of

CrOIls). The scope of current research efforts includes examinations of

existing data from atmospheric nuclear tests, theoretical efforts to

develop new understandings which go beyond available data, and non-nuclear

experiments.

As the overall picture of high altitude nuclear phenomenology

has become more complete, the DNA community has shifted from simply trying

to sort out gross effects to developing a refined picture of high altitude

nuclear explosions and the manner in which they interact with their sur-

rounding environment. With this evolution in thinking has come a recogni-

tion that the high altitude environment at high magnetic latitudes (the

auroral oval and polar cap regions) is, in a number of respects, quite

different from that at mid and low latitudes.

ISBNK 4..'L
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From the nuclear weapons effects point of view, the uniqueness

of the high latitude ambient environment stems from the departure, at

polar latitudes, of the earth's magnetic field from a dipolar geometry.

(Refer to Figure 1.) The key issues are the physical processes which are

linked to the highly distorted geomagnetic field. At low and mid magnetic

latitudes (L-shells of -12 or less), the field lines are closed and

fairly closely approximate dipole field lines. These field lines lie

within the plasmapause and are shielded by the magnetosphere from direct

exposure to the solar wind. In contrast, magnetic field lines originating

in the polar regions (high L-shells) extend out into (and perhaps through)

the magnetosphere where they are exposed to the influences of the solar

wind. At high latitudes, energy delivered to the magnetosphere by the

solar wind can he transferred to the polar ionosphere by electrical cur-

rents which descend along polar magnetic field lines from the magneto-

sheath. These are the Birkeland currents. 2  Studies 3 by specialists in the

theory of current driven plasma instabilities suggest that these currents,

which are unique to high latitude field lines, may drive plasma instabil-

ities which lead to ionospheric structure at scale sizes which can affect

radio and radar transmissions over a broad frequency spectrum. This iono-

spheric plasma structure may bear similarity to field-aligned structure

which develops in plasmas produced by high altitude nuclear explosions.

In recognition of the significance of such naturally occurring

effects, and in view of the direct connection of such effects to the high

altitude nuclear phenomenology problem, DNA has undertaken a research

program to acquire in-situ data at polar latitudes. The program has

included the WIDEBAND Satellite Program4 and, more recently, the HILAT

Satellite Program. Each of these programs involved/involves active

ionospheric probes from polar orbiting spacecraft. DNA has also pursued

theoretical efforts to understand the basic phenomenology leading to

disturbances in the ambient ionospheric environment and to understand the

connections c' the physics of that phenomenology to the nuclear effects

6
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problem. Data from the WIDERAND satellite and the associated theoretical

interpretations of that data have had a direct influence on the currert

state of understanding of propagation effects resulting from structured

plasma environments.6 A similar wealth of information from the HILAT

satellite is anticipated.

There are other reasons to be interested in high latitude

phenomenology. Note that the solar wind energy flux incident on the

magnetosphere is equivalent to -10 KT/hour to -10 MT/hour, depending

on the state of magnetic activity. tnder naturally occurring conditions,

only a small fraction of this energy flux is directly coupled into the

magnetosphere system. However, it has been suggested that a high altitude

nuclear explosion at polar latitudes could possibly alter the ambient

magnetospheric current patterns in such a way as to deliver over a broad

area of the polar ionosphere an energy input equivalent to perhaps mega-

tons per hour of additional nuclear explosions. 7  The sources of this

energy would he twofold: i) energy stored in the current systems within

the magretosphere, an( ii) energy delivered to the magnetosphere by the

solar wind and directly transmitted to the polar ionosphere. The proposed

initiator of this process and conduit for the energy flux is the nuclear

p ume, a magnetic-field-aligred column of high density plasma created by a

high altitude nuclPar explosion, which may reach several tens of thousands

of kilometers from the polar ionosphere up into the magnetospheric cur-

rents.

At present, this concept has not been explored by theoretical or

experimental means. The equations which are thought to describe the

coupled ionospherei,;' a']tosphere/solar wind system under ambient condi-

tions are complex, and the magnetic field geometry in which these equa-

tinns need to be olved is formidable. In addition, the extra complica-

tions introduced by a high altitude nuclear explosion render the nuclear

effects problem ruite difficult.

' . .
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A first step in attacking this problem is to develop a suitable

framework in which to perform calculations. Due to the complexity of the

problem, it is assumed that the theoretical approach will involve numeri-

cal calculations. This report describes a specialized, three dimensional,

orthogonal coordinate system which has been developed for the purpose of

numerically modeling the earth's magnetosphere and the interaction of high

altitude nuclear explosions with magnetospheric currents. Because the

magnetosphere spans an incredible volume by terrestrial standards, and

because numerical simulations of it must treat, with some sensible degree

of spatial resolution, features with a wide range of characteristic scale

sizes, the well known coordinate systems (Cartesian, cylindrical, and

spherical) are easily shown to present formidable problems. If one wants

to resolve simultaneously "fine scale" features near the earth (e.g.,

Birkeland currents and associated ionospheric processes), some measure of

detail in the bow shock and magnetopause regions (e.g., coupling mechan-

isms by which solar wind energy is transferred to the magnetospheric cur-

rent systems), and very large gradient length features associated with the

tail region (which stretches many tens of earth radii in the antisunward

direction), then a coordinate system/computational grid combination with

enough flexibility to distrihute grid points or cells in an appropriate

fashion with economy of computer resources is required.

When one sets out to design a computational grid within which to

model the magnetosphere, one rapidly finds that direct application of the

well known coordinate systems leads to an enormous number of grid cells

which far exceeds the high speed memory capacity of any present-day com-

ptpr. Furthermore, none of these coordinate systems naturally matches

all of the boundary surfaces or important features of the magnetosphere.

For example, the spherical coordinate system is ideal for modeling the

ionosphere and features near the earth (provided one makes it a geocentric

coordinate system), but far from the earth, spherical coordinate surfaces

don't match the shape of the outer portions of the magnetosphere or con-

9
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without loss of generality. This is the required conclusion. To estab-

lish the second part of Theorem 2, suppose R' =0 so that P1 = r+a , modulo

an irrelpvant multiplicative constant. The analysis above reJains valid

u4 to and including Equation (3-16), but now it is possible that k 3 does

not vanish. Assume this happens. lheu, none of the k s can vanish.

Using Equations (3-9) and (3-10) one obtains

I' = k I --- 2  (3-27a

P r

and

R I r+a
-- a = k aj (3-27 h
P 3  r

Irserti~q these expressions into Equation (3-12) results in

K r + +_af22 = 3-21 )
r

ir(.p this true for all r, a1 must vanish. To determine l2 and (3, use

I(uation 3-13):

-k (3-29)

or

'D P 2 (3-30)

tNotf- that [quation (3-13) is the only constraint upon the functions (. so

that t2 is ar.itrary here. Vithout loss of generality, then, one may

redefine t2 + V k This leads to

23
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R k1 P

2 (3-ZIR 2  r 2 R'

or

k f drr 2 R

R2 =e (3-22

up to an irrelevant multiplicative constant. Also

0'
2 = k cot 8 3-23)
02

or

02 = sinKe (3-24)

By Equation (3-11), R3 and 03 are both constant. To determine 4)2 and 4P3

consider Equation (3-13h). One of 4,' and 4) must vanish. If D3 vanishes
2 3 3

then the 's no longer define a three dimensional coordinatL system, so

that, in fact &2 must vanish. Thus, (D must be constant, leaving (3 arbi-
2 '23

trary. To summarize, it has been shown that

R, dr
fr 2 R1

C1 sin 8]k (3-25a)

3= 43(D ) (3-25b)

up to irrelevant constants. Again arguments given in Section 2 imply that

2 and C3 may be defined by

SRr

Q = e sin a (3-26a)

and

C3= (3-26b)
22
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The requirement R' * 0 may now he used to show that k 3  0. From (3-9h)

and (3-10h)

R' R' R
2 3 = k 2 (R, )2 (3-17)

R2 R3  r2 RT

Substituting into (3-12b), there results

r2  (!-)2 k (3-18)

or

/k1 k2 R1  A 1k r R' (3-19)1 2

Differentiating both sides and using (3-16), this becomes

A 3' A R' + k rR" (3-20)
33

which implies k3 = 0 since R" * 0. Of course, (3-16) now also implies

that k3, k4 and k1k2 all vanish. From (3-9), (3-10), and (3-11) k I and k2

cannot both vanish, however, for then JRi', O , (t i} would vanish for one of

i = 2 or 3. This would mean that i = constant for i = 2 or 3, and {ZiI

would no longer define a three dimensional coordinate system. Thus, there

are two alternatives.

Either k2 
= k3 = k4 = 0 with k, *0 or k I = k 3 = k4 = 0 with k2 * 0.

The symmetry of form present in Equations (3-9) and (3-10) implies that

the coordinate systems determined by each of these alternatives are the

same - one may consider only the first alternative without loss of

generality. From Equation (3-9) then

21
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and

r2 R R' G o' 0'' '
2 + _ + 1 3 0 (3-11)

P2 R 3  02 03 Sin 02 03

Equation (3-11) in turn implies

r2  _ - (3-12a)

Rp2 P 3  0 2 03 Si1n ' D2 03

k3 . (3-12h)

The right hand side of Equation (3-12) may also he separated

sin 2o ( 2- -3 + k 3) = - 3(3-13a)
02 03 ¢2 (3

= k4 .(3-13h)

All the k. above are at this stage arbitrary constants. The proof is
completed by showing that some of these constants must vanish and by using

this information to delimit tl e form of the various derivatives occurring

above. Multiplying (3-9) by (3-10) one obtains

= k k cot 2 e . (3-14)
02 03

Substituting this expression into (3-13a) results in

sin 2o [k1 k2 cot
2o + k31 : k (3-15)

The vali ty of Equation (3-15) for arbitrary 0 implies the following

iriprtant relatinnship among the separation constants

k3  : k 4 k1  k2  . (3-16)

-- m , -mm= -mmmmn nlllII i4ll i
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VC; VrC ' e
3

in ' ' (3-7)

= 0

a nf

'r R~ R 3 62. '
2 - 2 3 2 2 P

r2r

Di 5zin bohsdso -)? COS a0 2 *21 and( noting that if a

r2 R' R' 01
S itan 60 Z3

R IR 2  02 (-a

= k(3-9b

Similarly, (3-7) and (3-8) imply respectively

1 3 = tan e L (3-1a)
RiPR3 03

= (3-k2)
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if R' * 0. (Here the primes imply differentiation.) If R" = 0, then theI " I

followirg set of coordinate functions is the only additional possibility:

C, = r cos e , (3-4a)

C2 = r sin 802(4) , (3-4h)

and

02d,-f (D I .
43 = r sin 8 e 2

Here 02(¢) is an arbitrary function such that 0' * 0.2

Proof: The proof is accomplished hy using the orthogonality requirement

to develop a system of simultaneous partial differential equations for the

R., 0. and 0.. These equations may then he solved in terms of a set of1 1 1

separation constants k to obtain the required result. Proceeding then,

the orthogonality requirement

VC i • V~j 
= 0 , i * j ,(3-5)

implies

Vl • VC2 = R R2 cos E2 02

i O 0 (3-6)- r RIR 2 sin 8 02 2

0.

18
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SECTION 3

A CLASS OF POSSIBLE COORDINATE FUNCTIONS

In this section, two results will he presented regarding the

possihility of formally generalizing the mathematical structure of the

dipole-field-aligned coordinate system described in Section 2. Many

possihle generalizations might he explore(. However, for the sake of

analytic tractahility, attention here will he restricted to coordinate

functions of the form

P(r) 0(e) 8 ( ) (3-])

where r, a, * are the usual spherical coordinates. Coordinate functions

of this form will he referred to as "separahle coordinate functions." We

present two important theorems.

Theorem 2

The most general set of "separable coordinate functions,

including the coordinate function

1 = RI(r) cos e (3-2)

and satisfying the requirements of orthogonality, is given by

1 = R,(r) cos 8 , (3-3a)

2p
'

2 e I sin 8 (3-3h)

and

C3 = (3-3c)

17
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Thus, a magnetic field B, obeying the usual Maxwell equations, cannot
+ I 

+

possess a pseudo-potential unless B - J talvanishes, where Jtalis the
total current associated with B. Therefore, the field-aligned currents in

the magnetosphere prohibit the existence of a field-aligned coordinate

sy stemn.

Even though the presence of field aligned currents forbids the

existence of an orthogonal coordinate system aligned with the magneto-

spheric R field, it may be still possible to design a coordinate systeml

which is more faithful to the particulars of the earth-solar wind geometry

than nne of the standard coordinate systems. Such a coordinate system

might, for example possess a dipolar or spherical character near the sur-

face of the earth but transition to a more cylindrical behavior at large

distances from the earth in order to conform to the elongated configura-

tion of the magnetosphere (c.f. Figure 1). The remainder of this report

is dedicated to an exploration of this idea.

16
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coordinate system defined by Equations (2-4) permits a ready decomposition

of the plasma motion into components which are either parallel or trans-

verse to this magnetic field. Experience has shown that such a decompo-

sition is crucial in simulating the detailed aspects of plasma hehavior

relevant to high altitude nuclear phenomenology while meeting the con-

straints of available coripiiter resources.

Given this experience, it seems appropriate to begin attacking

the problem with which this report is concerned by asking whether or not

it is possible to construct an orthogonal coordinate system aligned with

the non-dipolar, solar-wind-distorted magnetic field of the earth's mag-

netosphere (c.f. Figure 1). Interestingly enough, it can he demonstrated

that the presence of field-aligned currents within the magnetosphere

rigorously precludes the possibility of such a construction. The validity

of this statement is directly implied by the following necessary condition+ +

for the vector field F(r) to possess a pseudo-potential. 9

Theorem I

If the vector field F(r) has a pseudo-potential (r), then
+ +
F * VxF must vanish.

Proof: F *VxF

(r) vT • Vxjj(r)VT (2-6)

S1(r) v- [V(p(r) x vT + U(r) vxvY] (2-7)

=0

151
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+

for some i. If Fquation (2-3) holds, Vi(r) i saio tc he aTr integratint1
+

factor and i a pspudo-pnteptial for the field F.

An interesting example of these ideas, important for MHD simula-

tions of mid-latitude ionospheric plasmas, is the geomagnetic-dipole-

field-aligned coordinate system. This coordinate system is defined hy trc

coordinate functions* a, 6, Y:

cos a (_e)2 cos 9 , (2-4a)
R

sin a - (__)1/2 sin 0 , (2-4b)

R

and

y . (2- 4c)

Here, R is the radius of the earth and (R, e, *) are geocentric spherical
P

coordinates with the colatitude 0 being measured rrom the geomagnetic

pole. a, a, and y satisfy the orthogonality curiitions (2-2). In addi-

tion, it may he easily verified that the gradient of a is proportional to

the geomagnetic dipole field, 9 ipolp, given by

ipole - )3 [2 cos a 9 + sin e e] (gauss) (2-5)

where and i are radial and colatittidinal unit vectors. For an iono-

spheric plasma moving in the dipole magnetic field of the earth, the

Notice that the sets of coordinate functions { . and {f. (r') (no sum
on i) describe equivalent coordinate systems si;ce the 9 adient of r
and that of f (& ) are parallel. This freedom of definition has be4;
used in Eqtatlon! (2.4) to define coordinate functions a, I, y which
are measured in radians.

14
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SECTION 2

SOME PRELIMINARY CONCEPTS

As a prelude to a detailed discussion of the problem with which

this report is concerned, it may be useful to review a few basic defini-

tions regarding the concept of a coordinate system. Following Reference

9, a coordinate system is a threefold family of surfaces with defining

equations

+

4i(r) = (constant) i  , < < i < 3 , (2-1)

which may be inverted to yield r as a function of the Ci's" The ci's are

referred to as coordinate functions and the intersection of two of the

surfaces defined in (2-1) is called a coordinate line. The coordinate

system defined by {i} ( { 1 , 2 ," 3} ) is said to be orthogonal if

Vci • Vcj = 0 , i * j (2-2)

In practice, the property of orthogonality is an important simplifying

feature of a coordinate system. For this reason, as stated in the intro-

duction, only orthogonal coordinate systems will be considered in this

report. One last concept which should he mentioned at this point is that

of a field-aligned coordinate system. A coordinate system jz., is said

to be aligned with a vector field F(r) if V i is parallel to F for some
+

i. This means that there must exist a scalar function V(r) such that

uj(r) V~i = F(r) (2-3)

13
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Given that the unusual geometry of the magnetosphere is a cause

for difficulty, one might he tempted by the idea of a magnetic-field-

aligned coordinate system. This approach will be explained later in this

report. The idea is quite attractive, hut as will be shown, the differen-

tial geometry of such an idea is incompatible with the physics of the

magnetosphere.

The coordinate system developed in this report, the "zeta coor-

dinate system", has been designed to have desirable geometric properties

in the near-earth region (i.e., it can match selected features in and

above the ionosphere) and to transition gracefully to a coordinate system

which allows for simple exterior boundary surfaces. The coordinate sur-

faces of this system can be made to conform closely to dipolar surfaces

near the earth (so they look like a field-aligned system there). These

coordinates retain enough flexibility to permit the user to orient the

dipole axis arbitrarily relative to the earth-sun axis. Far from the

earth, the coordinate system approaches a cylindrical system with the axis

along the earth-sun direction. The zeta coordinate system is orthogonal.

The following sections of this report explain the theoretical

basis for this coordinate system. In Section 2, a brief review of some

basic mathematical concepts relevant to the study of coordinate systems is

presented. In Section 3, an attempt is made to generalize the mathemati-

cal form of the dipole-field-aligned coordinate system B which has been

used previously for modeling low and mid latitude nuclear effects. This

results in a simple characterization of an interesting class of possible

coordinate functions. Next, in Section 4, one member of this class, the

zeta coordinate system, is examined. This system is well suited to per-

forming simulations of magnetospheric physic,. Finally, the results are

summarized in Section 5.

12___________
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farther in the antisunward direction than in the sunward direction without

any problem. However, near the earth the coordinate surfaces do not match

the geometry of the ionosphere. In order to resolve details in the iono-

sphere, the cylindrical cells must be relatively small (-50 km on a

side, for example). Direct extension of the resulting cylindrical coordi-

nate surfaces to magnetospheric distances leads to a large number of

computational cells which are much smaller than is appropriate. This

means that one must resort to numerical "fixes" to try to make the simula-

tion physically sensible in an important portion of the problem (the iono-

sphere), subject to the constraint of a limited computer memory (i.e., a

limited number of grid cells).

A third candidate is Cartesian coordinates. The situation is

similar to that of cylindrical coordinates. Far from the earth, the

boundary conditions are easily implemented, but near the earth, coordinate

surfaces do not match the natural geometry of the problem. Closely spaced

coordinate surfaces near the earth translate into excessive numbers of

unnecessarily small grid cells well out into the magnetosphere.

It is worth noting that so far only orthogonal coordinate sys-

tems have been considered. This has been deliberate. In order to insure

that the differential or integral equations that are to be solved to simu-

late the magnetosphere remain tractable, we have chosen to require ortho-

gonality of any candidate coordinate system. Experience has shown that

the effort required to implement on a computer complex equations in a non-

orthogonal coordinate system can become unreasonably large. In addition,

we impose the requirement that the candidate coordinate system be analyti-

cally generated. This requirement allows one to perform a fair amount of

exploration of the physics equations before going to the computer.

11
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form to the streamlines of the solar wind. If one wants the hounding sur-

faces of the computational space to he simple coordinate surfaces (spheri-

cal in this case), then a grid which extends well out into the riagnetotail

(say 40 earth radii) will also extend well out (40 earth radii to he

exact) in the sunward direction. Unfortunately, that means slightly less

than half of the entire grid volume will lie sunward of the bow shock in

the zone of unperturbed solar wind. For many problems, this situation

represents a tremendous waste of computer resources (storage and central

processor time). This problem can he overcome hy programming the computer

to chop out or ignore grid cells in uninteresting regions, hut only at the

expense of computer code simplicity.

Also note that if one wants spatial resolution of 2 earth radii,

for example, at a distance of 20 earth radii, the angular separation of

radial grid lines needs to he 0.1 radians. Therefore, in a simple-minded

application of spherical geometry, these radial lines define cells in the

ionosphere which have dimensions on the order of 650 km -- far too large

to he useful. Conversely, choosing the cell dimensions and radial coordi-

nate surface spacing according to ionospheric criteria leads to numerous

cells at large distances from the earth which are inappropriately small.

These considerations lead to the conclusion that spherical

coordinates are not particularly well suited to the magnetospheric

prohlem. Numerical calculations in a spherical coordinate system would

require suhstantial effort just to define an acceptable computational

grid.

It is appropriate to next investigate cylindrical coordinates.

Assume the cylindircal axis lies along the earth-sun line. (The reader

may wish to convince himself that other orientations are of limited util-

ity, at hest.) Then boundary conditions far from the earth (outside the

magnetosphere) are simple to implement, and the grid can he extended much

10
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D3 
=  e (3 -31a)

-k2 f d4 ",
= e 2 (3-31b)

Summarizing, the following expression for the C are implied by the equa-

tions above:

C, = r cos e , (3-32a)

C2 = (r sin D2)kl , (3-32b)

and

a n dd

C3 
= (r sin 0 e 2 ) 3-32c)

which is equivalent to the desired result.

Theorem 3

The only set of coordinate functions {;i satisfying orthogonal-

ity and separability and such that

I = RI(r) sin 0 cos € (3-33)

is the set of cartesian coordinate functions.

Proof: The orthogonality and separability requirements may be used as in

Theorem 2 to develop a system of simultaneous partial differential equa-

tions. These equations are then solved in terms of a set of separation

?4
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I i

constants to show that one of the coordinate functions must have the form
R(r) cos e so that Theorem 3 follows as a corollary of Theorem 2. To

proceed with the proof, note that the orthogonality criteria are

VCI "* 2 = R' R; sin 0 02 COS ¢2

+ RI R2 cos 6 0' COS 0'2
-27 2

(3-34)

1 R1 R2 sin E 02 sin (D2
r2 2in 1 2

-0

V = R' R' sin a 03 cos * D1 3

r-7 P R 3 cos e 0'3 cos 3

(3-35)

- - R 3 sin o 3 sin

-0,

and

V;2 "V 3 =R; R3 02 03 €2 ¢3
O' ' ¢2 0r 2 3 2 03 23

+ R2  P3  0; 0 3 (2 4'3

(3-36)

+R

r
2 

Si-n-
2

- 2 R 3 02 03 02 (3

-0.
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From (3-34) and (3-35)

r2 R' R . 0'i + _Lcot - 1 ta =0R, R . -- - t (3-37)
1 1(.

for i 2, 3 . This implies

r2 R' R'I I
R = k.R 

(3-38)

and

I- cot8 ta
2  t s i n O, - k . ( 3 -3 9 )

Equation (3-39) may he separated to produce

COS 8 + ki  sin sin e
I = 2+i (3-40)

and

-tan +k
,2+i (3-41 )

Turning to Equation (3-36) one finds

r2 R' R' o' 0' 0' 0_ ___I_ __ 2 3 0.R2 R 3  02 03 sin 03 (3-42)

26
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This implies

r2 R' R'
R2 2 = k 6  (3-43)R2 R3

and
I I i I

203+ 02 = -k 6 .(3-44
02 03 sin76 8 2 D3

The last equation may he further separated to produce

0' 0' 2e

+ k6) sin = - k7  (3-45)
0 2 03

and

2 = + k7 .(3-46)

02 03

The above equations can now he solved for the various k. and the required
3

result obtained. First, note that Equation (3-41) implies

0' "3 tan 2€ = k5 k4  (3-47)
02 f3

With the help of Equation (3-46) this becomes

k 7 tan 2
0 = k5 k4  (3-48)

which implies

k7= 0

and (3-49)

k5k4 = 0
27



Thus, hy Equation 3-46, one of -2 , -i must vanish. Suppose -- 0
02 (D2

Then, hy Equations (3-39) and (3-38)0 3

02 - k2 tan 0 (3-50)
362

and

'; _ k2 R1 (3-51)

p2  r 2 R

Clearly, k2 cannot vanish if { i} is to define a three dimensional coordi-

nate syste. The above equations imply

r 2  R ,

2 : [P I cos 61 2  (3-52)

or equivalently

f dr rR

Z2 = e I cos e (3-53)

Given the non-trivial * dppndence hypothesized of ¢, Theorem 2 forces

c, = r sin 8 cos o , (3 -54 a

C2 = r cos e , (3-54h)

and

3 = r sin 6 sin 0 . (3 -5 4 c)

28
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A similar result follows if one takes-3 0 . This is the desired conclu-

sion.'D

Theorems 2 and 3 rather severely limit the extent to which it is

possible to generalize the dipolar field aligned coordinate system in the

manner described in Section 2, using separahle orthogonal coordinates. To

see this, note that such a generalization must involve one coordinate

function 1(r), say, which satisfies

cl(r) + Vdipole r for values of r - Rearth (3-55)

r

Here, p is the moment vector associated with the dipole field to which the

coordinate system involving c, is aligned in the near earth region. Now

p . r = p, r sin 0 cos + P2 r sin 6 sin + P 3 r cos 8 (3-56)

In order for the coordinate function j to be separable, pi= p. ei for
some particular i. If i = I or 2, then Theorem 3 implies that C, "ist he

part of a cartesian system and so cannot become dipolar for any value of

r. If i = 3, then Theorem 2 completely fixes the set of coordinate func-

tions to which j belongs once the radial dependence of c, is specified.

In what follows, the coordinate system resulting from the choice

of C, given hy

c, = (r - kr-n ) cOs a (3-57)

for arhitrary non-zero constants k and n will he investigated with partic-

ular emphasis upon the case n = 2. For large r and positive n, C,

approaches the Cartesian coordinate z. For small r and n = 2, C,

approaches the dipole coordinate cos a. Note that the spherical surface

29
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n+l
of radius k , centered at the origin is a surface of constant C1. Thus,

4

the orthogonal coordinate system including I(r) also possesse, the quali-
+

tative features of a spherical coordinate system for a certain range of r.

30
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SECTION 4

A SPECIAL COORDINATE SYSTEM

The complete specification of the set of orthogonal coordinate

functions to which c, (Equation 3-57) belongs can be accomplished by using
Theorem 2. To do this, the following indefinite integral must he evalu-

ated.

fdr [ (r-kr n) (4-1a)(4-1
r 2 (1+nkr

-n -I )

n
fdrf- (4-1h

nr n n+l kr + kn

tn[(r n + kn/r) /n + irrelevant constant (4-ic)

Inserting this expression into Equations (3-3) above, the following

coordinate functions are obtained:

- (r- kr -n ) cose , (4-2a)

a2 = ( r n + nkr-1l11n sinB , (4-2b)

and

31 /
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Specializing to the case n=2, Fquations (4-2) become

C, = (r - k/r2) cos e , (4 -3a)

C2 = V(r2 + 2k/r) sin e , (4-3h)

and

C3 =  •( 4-3c)

As a check, the orthogonality condition

VC v =0 , i j (4-4)

may he explicitly verified by computing the gradients of the C above:

+ 2k) cos - (1 - k/r3) sin B 6 , (4 -5a)rr

= (r - k/r2 ) sin O + I /(r2 + 2k/r) cos o e (4-5b)
2 -r

r + 2k/r

and

1 (4 -5c)
r sin 8

While the orthogonality of the coordinate system defined by

{i } is guaranteed by Theorem 2, the question of invertibility of this

coordinate system, i.e., of whether or not the specification of (C1,C2,C3)

uniquely determines (r,6,0), has yet to be addressed. In order to treat

this question, it is useful to consider two separate cases: 1=0 and cj*0.

32
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r -0

In this case, by Equations 4-3, there are two alternatives. Either:

r = k1/3 , (4-6a)

e = sin -1 ( C2 (4-6b)

V3 k 1 / 3

and

= 3 (4-6c)

or

r = T/2 , (4-7a)

r3 - 2r + 2k = 0 , (4-7h)

and

= ¢3 •( 4-7c)

The "or" here i, of course an inclusive "or", and the sign of 0 is the

same as the sign of t 2 . The branch of this alternative which obtains for

a given triple (0,C2,C3) (and, hence, the answer to the question of inver-

tibility) Is determined by the magnitude of 2. If IC21 > 3 k /3 , then

Equation \4-6h) has no real solution so that Equations (4-7) must be

used. The radial variable r is then determined by the positive roots of

Equation (4-7h). As discussed in the Appendix, these roots are two in

numb(r. One is always less than k1/3 and the other is always greater than

thp k 1/ 3. They are given explicitly by"0

2
r, - 1 21cos A (4-1a)

V3

and

=2 4

r 2 :_ 21 cos(A + (4-8h)
V33
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1 -3 k 4c
-- C

33 2

Thus, the 4 coordinate system is not strictly invertible for cfl=', ano

C21 > 13 k /3* On the other hand, if 1 < V3 k1/3, then Equation

(4-7h) has no real roocs (c.f. Equation 4 -8c), so the use of Equations

(4-6) is necessitated. These equations yield unique values of (r, ,),

this insuring invertibility for 41=O and 1421 < V3 k Finally, if !2f

/3 k1/ 3 , then Equations (4-6) and Equat ions (4-7) give the sane unique

result, namely r = k' / 3 , e = - /2.

In analyzing this case, it is useful to hegin hy isolating the

theta dependance in Equations (4-2a) and (4-2h):

= cos , (4-9a)
r k k/r 2

-2 =-sin , (4-9f)

Vr + 2k/r

Squaring both sides of each equation and adding the results, there follows

24 2
1  + C. r4-10)

(r 3 - k) 2  r 3 + 2k

This expression can he simplified by multiplying both sides by

(r3-k)2 (r3+2k), expanding the various products which arise, and collect-

ing powers of r. Equation (4-10) then hecomes

34



P~) 2+ r 2 k c 2_ 2)r 4  3k 2r 3 k 2c 2 r+2
P(r) -r- (!+2)r - 2k(1-),2  - k2r + 2k 3

= 0 .(4-11)

Equation (4-11) implictly determines r for given C, and C2 in terms of the

(positivp) roots of a ninth order polynominal P(r). Unfortunately, the

complexity of Equation (4-11) appears to render dubious the prospect of

obtaining explicit analytic expressions for these roots as was done above

for the case Ci=0. It is possible, however, to determine rigorously the

number of positive roots of P(r) and to obtain upper and lower bounds upon

each of tzese roots without benefit of such explicit knowledge. This is

done in detail in the Appendix, using certain theorems from the theory of

equations. Therein, it is shown that P(r) has precisely two positive

roots for 1*0. One of these lies in the interval (0, k1/ 3) and the

other in the interval (k 1/ 3 , k 1/ 3 + Af) where

max[( +2), 2(c'-c'), 3k2/3] (4-12)

Thus the C-coordinate system is double valued for non-vanishing values of

cl, just as it is for 1=0, 2>/3 k1/ 3.

Even though the C-coordinate system is not strictly invertible,

as shown above, the lack of invertihility is of a sufficiently innocuous

form that this coordinate system may still he used in practical applica-

tion. It is simply necessary to specify a parameter which distinguishes

between the inside and outside of the sphere of radius k1/ 3, in addition

to the triple ( 1,e2," 3). Then the polynomial P(r) can be numerically

solved for a unique value of r, either lying in the interval (0, k 1/ 3 )

or in the interval (k / 3, k1/ 3 + ,M). A mesh which has been generated

using this technique is shown in Figure 2. The value of k 1/3 which has
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been chosen here is 6P e. The particular numerical algorithmi employed in

solving for the positive roots of P(r) was the Newton-Raphson method.

Tn addition, the following constraints have heen adhered to in selecting

the and C2 contouir vaIlues for this miesh.

a) Cells on the surface of the earth at a colatitude Of lbo

have dimension -100 km x 100 kmi.

b) The dimenrsions of successive cell boundaries alone the

z-axis movinq away from, the earth increase hy 150/ until a

dimiensi n equal to P pi-n reached whereijpon the rate of

increase is reduced to zero.

ci In the tpjpr hemriisphere, the di lens ions of stuccessivye cell1

hournlaries along tho surface of the earth are, increased by

I S icvi eq both clockwise and counter-cl eckwi se f roe a

colatitiide of 1b'. Boundlaries in the lower hemiisphepre are

Whtiined by reflection in the x-y plane.

I Thie dirtensi ons of successive cell botindari es a 1 on; the y-

uxYi s to th- right of the ci rcutlar boundary -crease by 15'

iintii a dlimension equal to R is attaineei whereupon the rato

~t tcreseris, decreasedI to zero.

~ve l- i mpr eed inr an at t empt to, eoaIi st ic(alIly meept

or 'l (eiede i unee to s imulate; r the behavi or of a

* * ~ ~ lnr' 15ih a Eerie should hep caalble of fine

o ,iie rnra l nval arn' at the sare time be,
fptijrp (i. f raqrietoc.1 hriric cujrrent ry-teris . Ti e

i re~ of Pces ive ce bou ndHrie i w

ir Ii t ,fhe f'ttal niethecr of cel in t1,1rhe mesh,

orI itr Sturayc rfi irer t y ther (otte whilep
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The first suhstitution transforms the equation T(R)=Ul into the

equation P(R')=O with

r(R 2R' Z2 R'8  - 3R' 6  
- 2 Z-2) - (Z2+7 2)R

' 2  +  (A 7

2 2(LZ 2 1 2

As hefore, implementing the next two suhstitut ions rk-ars rPe ri!in. P(P'

as a polynomial in R"' = '-1

9

(R ' = (Z1, 72) (p ,_ )n

n0o  n

This polynomial may also he shown (see holow), tn Ios

exactly one variation of siqn for all Z1 an', 72, Z IA. Again hY

Descartes' Rule of Signs, this means that P(R') has one an'( only (,ne root

greater than unity for each Z, and Z2, Z O. This in turn irlplics that

P(R) has one and only one positive root less than unity. Herco, P(r) ha,

one and only one root less than k1/ 3 for each Z, and Z2, Zl*(). Since

r=k 1 /3  is not a root of P(r) for E 1*0, the assertion that P(r) his orly

two positive roots - one less than and the other greater than k 1/3 -

will have heen demonstrated once it has heen shown that the coefficiPnts

ian} and IJhn, for 0 < n < 9, possess one and only one variation of sign

for arhitrary Z, and Z2. Z1*0.

One way to estahlish this property of the coefficients an' h is0

to calculate explicitly these quantities using Homer's Method. Figures

A-I and A-? show the results of applying this algorithm to the polynom-

ials P(R) and P(R) respectively. The required coefficients, listed in

Table I for convenience, are given by the underlined terms in these

Figures. Consider first the an's. a9 and a 8 are positive while a, and a0

-u



of the initial substitutions in this sequence. One particularly

advantageous choice is that set of substitutions which results in a

translation of R by unity. This set of substitutions is given by

R I + 1 (A-4a)
R'

R' = I/R" (A-4b)

which leads to

R = R" + I (A-4c)

This choice is intuitively appealing because R=1 corresponds to r=k 1/3,

the radial value for which the character of the &-coordinate system

changes from being dipolar to being cylindrical. More importantly, the

polynomial P(R) rewritten as a polynomial in R"=R-1,

9
P(R) = n a(Z, Z2 ) (R-1)

n  (A-5)n:O

may be shown to possess exactly one variation of sign for all Z, and Z 2'

Z1*O (see below). By Descartes' Rule of Signs, this means that P(R), has

one and only one root R which satisfies (R -1)>O, i.e., P(r) has one and

only one root greater than k1/3. To find the number of positive roots

of P(r) less than k1/3 consider the substitutions

1
R = (A-6a)

R'

R' =__1 + I (A-6b)

R"
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is a real polynomial with the first negative coefficient preceded by k

coefficients which are positive or zero, and if G denotes the greatest of

the absolute values of the negative coefficients, then each positive root

is less than 1 + (Ga)i/k
0

The mathematical armada assembled above may now he brought to

bear upon the problem of analyzing the positive roots of P(r). It is

convenient to first scale P(r) by k3.

P(r)P(R)=

= R9  (Z 2+Z2)R 7  2 (Z2-Z2)R4 3R3  Z-ZR+2 (A-2):~~ ~ 2( Z) -2R

with

= r (A-3a)

k 1/3

Z, = __ (A-3h)
k1/3

and

Z2 - (A-3c)k1/3

Clearly R is a root of P(R) if and only if r k1 / 3 R is a root of
o0 0

P(r). Hence, the objective of this Appendix can he accomplished by study-

ing the positive roots of P(R). As suggested above, one way to proceed in

this study is to apply a sequence of the substitutions prescribed by

Vincent's Theorem to P(R) until one arrives upon a polynomial with no more

than one variation of sign. The amount of labor required to pursue this

approach can be minimized by a judicious (or perhaps fortuitous!) choice

48
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The binominal theorem implies that this polynominal can be written as a

polynomial of degree n in (x-c):

f(x) = An (x-C)n + An- 1 (x-c) n - I + ... + Ao

Horner's Method is an algorithm for calculating the coefficients A. It

works as follows:

First calculate A . Do this hy using synthetic division to

divide (x-c) into f(x). The result will he a polynomial, fl(x),

of degree n-1 in x and a remainder which must he A . Now divide

fl(x) by (x-c) again using synthetic division. The result is a

polynomial, f2(x), of degree n-2 in x and a remainder which must

be Al. This sequence is repeated for a total of n times. The

final iteration produces the obvious result A,=a . In practice,

it is convenient to arrange the various polynomial coefficients

occurring within this procedure in a superdiagonal array.The
.th
t row of this array consists cf the coefficients of fi (x)

arranged from left to right in decreasing rank order with the

last term being the coefficient A.. An example of such an array

is shown in Figure A-I.

The final result from the theory of equations which will he required in

this Appendix is a theorem which bounds the positive roots ol a real

polynomial.

Result 4:

If

f(x)= a xn + an ... +a 0  , an > 0,

47
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m is counted as m roots. Two consecutive terms of a real polynomial are

said to present a variation of sign if their coefficients have unlike

signs.

As an example, the polynomial Equation (A-la) has two variations
2 2 2 2

of sign if i > 2 and four variations of sign if 1 < 2- In the first

case, Descartes' rule allows zero, two, or four positive roots. Clearly

Descartes' Rule by itself will precisely determine the number of positive

roots of a real polynomial only if the polynomial has no more than one

variation of sign. The following result is therefore a very useful

adjunct to Descartes' Rule.

Result 2: (Vincent's Theorem)

If an equation without multiple roots is transformed succes-

sively hy the substitutions

x = a+l/y , y = b+l/z , z = c+l/t ...

where a, h, c, ... are arbitrary positive integers, the transformed equa-

tion, after a sufficiently large number of such transformations, possesses

either no variations of sign or just one.

Descartes' Rule of Signs and Vincent's Theorem form the basis of

a universally applicable method of isolating the positive roots of a real

polynomial. In using this method it is helpful to have an algebraic

algorithm for efficiently performing the transformations required by

Vincents' Theorem. One such algorithm is known as Horner's Method.

Result 3: (Horner's Method)

Suppose

fxa n n-i

flx) a n X0 + an_ ] x 0+ a0
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APPENDIX

In this Appendix, it will he shown that the polynomial P(r)

gi ven by

2 2 2 2 k2 2P(r) = r 9 
- ( + 2 )r 7 - 2k )r4 - 3k 2 r 3 - k + 2k 3 (A-la)

has precisely two positive roots if Fl*O. One of these roots lies in the

interval (0, k1/3) and the other in the interval (k1 /3 + f-) where

= max ( 2+ 2 ) , 2( -2) , 3k2/3]

As an immediate corollary of this result, it will also he shown that the

polynomial

O(r) = r r 2 r + 2k (A-h)

has precisely two positive roots for > 3k2/3. One of these is always

less than k1 /3 and the other always greater than k 1/3 The demonstration

depends crucially upon several results from the theory of equations which

are stated below without proof. Proofs of these results may be found in

references 10 and 11.

Result 1: "Descartes' Rule of Signs"

The number of positive real roots of a polynomial with real

coefficients is either equal to the number of its variations of sign or is

less than that number by a positive even integer. A root of multiplicity

4b
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in this scheme is generated using the C-coordinate system and therefore

possesses the advantages and disadvantages described in the preceding

paragraph, i.e., it is well tailored to the elongated geometry of the

magnetosphere and allows simple solar wind boundary conditions, but it

also requires the existence of a spherical interface which would probably

require special treatment within an MHD simulation code.
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accomodates both the dipolarity of the near earth magnetic field and the

elongated structure of the magnetosphere at large distances. An example

of this rejoining is shown in Figure 3c. This particular mesh may he

completed in three dimensions, under the previously stated constraints

regarding the azimuthal dimensions of cells, by setting the angular separ-

ation between successive azimuthal planes of the inner and outer meshes to

0.06 and 0(.07 radians, respectively. r'otice that the use of an azimuthal

axis aligned along the earth-sun line allows the outer mesh to he much

shorter in the sunward direction, than in the anti-sunward direction

corresponding to the fact that the magnetospheric how shock region is

compressed toward the earth while the magnetotail is distended away from

the earth. Also, the use of such an axis permits a simple specification

of solar wind boundary conditions. An apparent disadvantage of the use of

this type of hyhrid mesh, for purposes of constructing an MHD simulation

code, is the presence of a spherical surface (at r =k 1/3) upon which the

houndaries of adjacent cells are not aligned. This surface would probably

require special treatment within such a code if spurious numerical effects

are to be avoided.

There are other ways to construct "hybrid" meshes using the

C-coordinate system which should he mentioned briefly here for complete-

ness. For example, instead of using the z' axis shown in Figure 3b as the

azimuthal axis of the exterior mesh, one might use the z-axis of the

C-coordinate system itself, now aligned along the magnetospheric axis of

elongation. This choice would concentrate resolution in the equatorial

regions of the mesh at the expense of resolution in the polar regions so

that it does not seem to he as desirable an alternative as that pictured

in Figure 3 for the high latitude problem of concern here. Another option

is to generate the interior mesh of Figure 3 using a spherical coordinate

system. The benefits of dipolarity are thereby relinquished in favor of

the simplicity of a spherical geometry near the earth. The exterior mesh
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a

Figujre 3. An illustration of the tise of two azimtuthalae i eertnmePsh hase(I u~pon the C-Coordijnatp system.
3a. The portion of the mho iue2wihle i ngnrtn

of radius k11 3. The 2- of rigtr 2bhc isWtin the circleCipole axis. Zai is chosen to he along the geomagnetic
3h. fh prtions of3 the rish of Figure 2 which lies outside the circle

of adis k/3.Theazimuthal 
Axis Z' defined in the text wouldI

he taken as the axis of elongation Of the rlagnetosfphere.
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maintaining acceptable hounds upon numerical error arising frori off-center

differencing. To complete the mesh in three dimensions, the contours of

of Figure 2 must he rotated azimuthally. In order for the azimuthal

dimensions of cells at the periphery of the mesh to be limited to -R e

and to maintain 100 km resolution in the vicinity of the auroral oval, the

angle between successive azimuthal planes in the full three dimensional

mesh should be taken equal to - 0.05 radian.

The three dimensional mesh described above fails to make optimal

use of the cylindrical character of the C-coordinate system at large

distances because the z-axis of this mesh is aligned with the geomagnetic

dipole axis rather than with the earth-sun line. This problem may be

alleviated by using the C-coordinate system to generate a mesh with two

different azimuthal axes. One way to do this is illustrated in Figure 3.

In Figure 3a, the dipolar part of the mesh of Figure 2, i.e., that part

which lies within the sphere of radius k1 / 3 , has been isolated and is

shown with its azimuthal axis directed along the geomagneti- dipole axis,

just as it is in Figure 2. In Figure 3h, on the other hand, the remainder

of the mesh exterior to the sphere of radius k1/3, is pictured with

another axis, called z', being used to define the azimuth. z' is the

azimuthal axis of a coordinate system {Ji} which is related to the

C-coordinate system by a simple colatitudinal translation:

= (r - k/r 2 ) sin e , (4-13)

= (r2  + 2k/r) cos e , (4-14)
2

and

C =4. (4-15)
3

Since the meshes of Figurps 3a and 3h both possess a spherical boundary at

r = k1 /3, they may he easily rejoined to create a "hybrid" mesh which
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Table 1. The coefficients la n1,1b} calculated by Horner's Method.

2 2

a o = Z h 021n = _3z 2

a1  -15z 2  hi = -12Z 2

22 2 2 2a2  -9(Z I+Z2) - 24Z, + 27 h 2 = 27-21Z1 _ 9Z 2

2 2 2 2 2a3  -27(ZI+Z2) - 16Z I + 81 h 3 = 108 - 20Z1 -36Z2

a4 = -33(Z2+Z2) - 4Z2 + 126 b4 = 207 - 1OZ 2 
- 60Z2

22 2 2

a5 = -el(Z2+Z 2 ) + 126 h5 = 234 - 2Z 2 
-5 222 2

a 6 = -7(Z2+Z2) + 84 h6 = 165 - 28Z 2

1 2 2

a 7 = -(Z2+Z2) + 36 h 7 = 72 - 8Z2

82

a8 = 9 h8 = 18 - Z 2

a 9 =1 h 9 = 2

are negative for Z *0. Thus, there is always at least one variation of
sign presented hy these coefficients. It is easy to see that there are no
more variations of sign for arhitrary Z, and Z2 with ZjO hy considering

possibilities (a)-(f), helow, regarding the magnitude of the quantity
2 2

Z7+Z2.
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(a) Z 2+Z2 > 36

In this case a7 is obviously negative. In addition, each of

the terms an, n<7, are also negative so that there is only

one variation of sign presented by the coefficients lan1 for

this case.

2 2(b) 12 < ZI+Z2 < 36

Now a7 is non-negative, hut an for n< 6 is negative defi-

nite. Again there is only one variation of sign.

(c) 6 < Z2+Z 2 < 12

a7 and a6 are both non-negative while an for n<5 is negative

definite. There is only one variation of sign.

126 2 2

(d) - < Z1+Z2 < 6

a7 , a6 , and a5 are all non-negative while an for n<4 is

negative definite. There is only one variation of sign.

e) 3 2 2 126

1 + 2  33

a7 , a6 , a5, are non-negative while a 3 and a 2 are negative

definite. Hence, regardless of the sign of a4, there is

only one variation of sign presented by the sequence of

coefficients {a n .

(f) 0 < Z2+Z 2 < 3

In this case, an for n>
4 is positive. Also

2 2 2
a3-a2 = -18(ZI+Z 2 ) + 8Z1 4 54 > 0

so again there can only he one variation of sign.
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For arbitrary Z, and Z2 with Z the quantity (Z+Z 2

within one of the intervals (a) - (f). Hence it has heen shown that the

sequence of coefficients {an} presents only one variation of sign for all
Z1, Z2, ZI*O. Now consider the coefficients {hn. h0 and h, are negative

while h9 is positive, so that there is at least one variation of sign

presented by the coefficients of r. To see that there is in fact only

one variation of sign presented by these coefficients, proceed as above to
2 2

consider several possibilities regarding the value of Z2, with ZI arbi-

trary hut non-vanishing.

2
(a) Z2  18

In this case, hn for n<8 is negative so that there is

clearly only one variation of sign.

(b) 9 < Z2 < 18

Now b9 and b8 are non-negative while bn for n<7 is nPgative

definite. Again there is only one variation of sign.

165 2
(c) < Z2 _< 9

b9, b 8 and b7 are non-negative and b n for n<6 is negative;

there is only one variation of sign.

2 165
(d) 3 < Z2  28(d) 2- 28

h9 b8' b7, and b6 are non-negative while b for n<3 isn
negative definite. Also

2 2hs = 27 + 8Z21 + 6Z2 > 0 ,

so that b5 >b4 for all Z1, Z2. Hence, there can be only one

variation of sign for this case also.
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2
(e) Z2 <

For this case, the b 's satisfy the inequality
n

h5 > b 4 > b 3 > b 2 •

The first part of this chain has already been established

above. To demonstrate the remaining parts, compute the

differences

hb3-h = 99 + IOZ4- 24Z2

and
2 2

b 3-b 2 = 81 + Zi - 27Z 2

2which are both positive definite for Z2,<3 and Z1*O. With this inequality

and the observation that h9, h8, h7, and h6 are positive for Z 3, it is

evident that there is only one variation in sign in the coefficients

h } for this case also.

It has now been shown that P(r) has precisely two positive roots

for Z* (*. One of these roots lies within the interval (U, k1/3), and the

other lies outside of this interval. An upper hound for the larger root

can he obtained by using Result 4 above. It immediately follows by

inspection of P(R) that the larger root must lie in the interval

(k 1 / 3, k 1 / 3 + MH) with

M -- max(44+, 2( - ), 3k2/ .

This is one of the results which was to he demonstrated in this Appendix.

To derive the other result, namely that the polynomial 0(r)

(Fquation A-lh) has precisely two postive roots - one less than and the

other greater than k1/ 3, if E21 > V-3 k1/3, note first that

P(r) = (r3 _k) 2  0(r) (A-9)
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This follows by direct multiplication or hy inspection of Fquatinn (4-10)

in the text. Equation (A-9) can he rewritten

P(r) I C: 0 = (r-k1/ 3 )2 (r 2 +rk1/ 3 +k2 / 3 ) 2 Q(r) (A-10)

Since the polynomial comprising the middle factor of the right hand side

of Equation (A-10) has no variation of sign, it can have no positive

roots. Therefore, the positive roots of Q(r) are the same as the posi-

tive roots of P(r)l t= 0 with the factor (r-k1/ 3)2 removed. Thus, the

above assertion regarding O(r) can be demonstrated by showing that the

coefficients lanln:2,9 and {bnln:2,9 above present one and only one vari-

ation of sign for &,=0, VE2 1>-3 k1/3. That this is so can he seen immedi-

ately from the above discussion regarding these coefficients.
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